Fibonacci Numbers and Modular Arithmetic

The Fibonacci Sequence start with $F_1 = 1$ and $F_2 = 1$. Then the two consecutive numbers are added to find the next term. The Lucas Sequence starts with $L_1 = 1$ and $L_2 = 2$ following the same rule of adding two previous consecutive numbers to find the next term.

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144... *Lucas Sequence*: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Recursive Formula: $F_n = F_{n-1} + F_{n-2}$ Recursive Formula: $L_n = L_{n-1} + L_{n-2}$

			Using Table 1 or the list given,	1					
Table 1			of how the pattern works. Give	$\varphi = 1 + \frac{1}{1 + 1}$	1				
n	F_n	L_n	$F_3 = F_1 + F_2 = 1 + 1 = 2$	n $F_1 = 1, F_2 = 1$ $\varphi = 1 + \frac{1}{1 + \frac{1}{1$					
1	1	1	$F_4 = F_2 + F_3 = 1 + 2 = 3$			1. / -			
2	1	2	$F_5 = F_3 + F_4 = 2 + 3 = 5$	Golden Ratio : $\varphi = \frac{1 + \sqrt{5}}{2}$					
3	2	3	$F_6 = F_4 + F_5 = 3 + 5 = 8$			2			
4	3	5	Table 2(on the right) is a table	The ratios will	Table 2				
5	5	8	of fractions each found by the	continue the	Fraction of Adjacent	Decimal			
6	8	13	following fraction: $\frac{F_n}{F_{n-1}}$	pattern and	Fibonacci Numbers	Equivalent			
7	13	21	which are the <i>relative</i> sizes of	eventually approach	<u>1</u>	1.0			
8	21	34	the Fibonacci numbers. The rel-	the unending	$\frac{2}{1}$	2.0			
9	34	55	ative sizes can each be rewritten	number called φ	$\frac{3}{2}$	1.5			
10	55	89	as the following examples:	("phi") whose	$\frac{5}{3}$	1.666			
11	89	144	$\frac{F_2}{F_1} = \frac{1}{1} = 1$	precise value is then	$\begin{bmatrix} \frac{8}{5} \end{bmatrix}$	1.6			
12	144	233	$\frac{F_3}{F_2} = \frac{2}{1} = 1 + \frac{1}{1}$	calculated as the	$\frac{13}{8}$	1.625			
13	233	377	$\frac{F_4}{F} = \frac{3}{2} = 1 + \frac{1}{1+1}$	Golden Ratio using	$\frac{21}{13}$	1.6153			
			F_{5} 2 $1+\frac{1}{1}$ F_{5} 5 1 1	the equation	$\frac{34}{21}$	1.6190			
			$ \frac{F_3}{F_2} = \frac{1}{2} = 1 + \frac{1}{1} \\ \frac{F_4}{F_3} = \frac{3}{2} = 1 + \frac{1}{1 + \frac{1}{1}} \\ \frac{F_5}{F_4} = \frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} $	$\varphi = 1 + \frac{1}{\varphi}.$	$ \begin{array}{r} \frac{13}{8} \\ \frac{21}{13} \\ \frac{34}{21} \\ \underline{55} \\ 34 \end{array} $	6.176			

Example: *Rabbits* Suppose you begin with a pair of baby rabbits, one male and one female. The rabbits have a 1 month gestation period(1 month being in the womb) and they can reproduce after 1 month of being born. Each pair reproduces another pair. Assume no pair ever dies. How many pairs of rabbits will exist in a particular month?

Dattorn	Time in Months	Start	; 1	2	3	4	5	6	3	7	Note	The pattern of number of pairs each
Pattern:	Number of Pairs	1	1	2	3	5	8	1	3	21	mont	h follows the Fibonacci sequence.
	Star	t	1	2	3	4	5	6	7	Each new month, the number of pairs		
Num	0		0	1	1	2	3	5	8	of new baby equal the number of		
Numbe	1		0	1	1	2	3	5	8	pair of parents of the previous month.		
Num	0		1	0	1	1	2	3	5	Adults become parents and new ba-		
То	1		1	2	3	5	8	13	21	bies become adults.*		

*New babies refers to those just born. Adults are 1 month olds and ready to reproduce. Parent pairs are those who just gave birth.

Example: New Patterns Determine a simple formula for $(F_n)^2 + (F_{n+1})^2$

-								-	Note: The sum are all odd Fibonacci terms greater
n	1	2	3	4	5	6	7		
	-		0	-		0	1 0 0		than F_1 (meaning F_3, F_5, etc). Even numbers follow
$(F_{n})^{2}$	1	1	4	9	25	64	169	441	
$(\Gamma)^2$	1	1	0	25	64	169	441	1156	the pattern $2k$ while odd numbers follow the pattern
(Γ_{n+1})	T	4	9	$_{20}$	04	109	441	1150	2k+1. The table helps identify a pattern that can be
sum	2	5	13	34	89	233	610	1597	
Bulli	2	0	10	01	05	200	010	1001	written as $(F_n)^2 + (F_{n+1})^2 = F_{2n+1}$ where n=1,2,3,4,

Creating tables is a helpful method of identifying patterns that otherwise cannot immediately be seen.

0 1

STEM SC (S): (760) 750-7324

Modular Arithmetic (informally known as clock arithmetic): In modular arithmetic, numbers "wrap around" upon reaching a given fixed quantity, which is known as the modulus (which would be 12 in the case of hours on a clock). When working with 12 as the modulus, we can say we are working with mod 12 Equivalence: \equiv means *equivalent* which is not the same as equal.

For example, on a modulus 12 clock, 12 is equivalent to 0; therefore, $12 \equiv 0 \mod 12$ which can be read as "12 is equivalent to 0 mod 12." Another example is 37 is equivalent to 1. Start at 0 and count up to 37. You should return to 1. Therefore, $37 \equiv 1 \mod 12$

L L

Check Digits

 $34 \equiv 4 \mod 10.$ $a \equiv r \mod m$

The following formulas are used to verify identification numbers using modulus 10.

Bar Codes

 $3d_1 + d_2 + 3d_3 + d_4 + 3d_5 + d_6 + 3d_7 + d_8 + 3d_9 + d_{10} + 3d_{11} + c \equiv 0 \mod 10$

There are 12 digits and c is the check digit.

ISBN-13

 $d_1 + 3d_2 + d_3 + 3d_4 + d_5 + 3d_6 + d_7 + 3d_8 + d_9 + 3d_{10} + d_{11} + 3d_{12} + d_{13} \equiv 0 \mod 10$ The last digit, d_{13} , is the check digit.

Checks

 $7n_1 + 3n_2 + 9n_3 + 7n_4 + 3n_5 + 9n_6 + 7n_7 + 3n_8 + 9n_9 \equiv 0 \mod 10$ The last digit, n_9 is the check digit.

Example: Given the bar code 3 4 0 0 3 2 6 9 1 2 0 c. Find the check digit c.

Step 1: Use the formula for bar codes: 3(3) + 4 + 3(0) + 0 + 3(3) + 2 + 3(6) + 9 + 3(1) + 2 + 3(0) = 56Step 2: We need $56 + c \equiv 0 \mod 10$ which means we need a multiple of 10 and r=0. Note that 56 + 4= 60

Step 3: $60 \equiv 0 \mod 10$. This tells us c = 4.

Fermet's Little Theorem If p is a prime number and n is any integer that does not have p as a factor then n^{p-1} is equivalent to 1 mod p. In other words, n^{p-1} will always have a remainder of 1 when divided Notation: $n^{p-1} \equiv 1 \mod p$ by p.

	1
Some Rules	
If $a = qm + r$ then $a \equiv r \mod m$	If $a \equiv r \mod m$ then $a^k \equiv r^k \mod m$
$a \equiv r \mod m \Leftrightarrow a + b \equiv r + b \mod m$	$a \equiv r \mod m \Leftrightarrow a b \equiv r \mod m$
$a \equiv r \mod m \Leftrightarrow ab \equiv rb \mod m$	
Note: a,q,m,r,k are all integers and \Leftrightarrow means	ens it goes both ways
Simplifying Modulos	
Example: Given: $5^6 \equiv r \mod 7$ Find r.	Example: Given $5^{600} \equiv r \mod 7$. Find r.
Step 1: Use Fermet's Little Theorem.	Step 1: Recall known facts: $5^6 \equiv 1 \mod 7$
We know we are working with $p = 7$ and $p = 1 = 7$ $1 = 6$	Step 2: Manipulate the numbers using known
Step 2: Confirm 5 does not have a factor of 7.	facts and rules:
Therefore, $5^{7-1} \equiv 5^6 \equiv 1 \mod 7$	$5^{600} \equiv 5^{6*100} \equiv (5^6)^{100} \equiv 1^{100} \equiv 1 \mod 7$
Csusm.edu/stemsc f XXX	Image: Constraint of the strength of the strengt of the strength of the strength of the streng