Fibonacci Numbers and Modular Arithmetic

The Fibonacci Sequence start with $F_{1}=1$ and $F_{2}=1$. Then the two consecutive numbers are added to find the next term. The Lucas Sequence starts with $L_{1}=1$ and $L_{2}=2$ following the same rule of adding two previous consecutive numbers to find the next term.
Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144... Recursive Formula: $F_{n}=F_{n}+F_{n}$
Lucas Sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
Recursive Formula: $L_{n}=L_{n 1}+L_{n}{ }_{2}$

Table 1

n	F_{n}	L_{n}
1	1	1
2	1	2
3	2	3
4	3	5
5	5	8
6	8	13
7	13	21
8	21	34
9	34	55
10	55	89
11	89	144
12	144	233
13	233	377

Using Table 1 or the list given, here is an example of how the pattern works. Given $F_{1}=1, F_{2}=1$ $F_{3}=F_{1}+F_{2}=1+1=2$ $F_{4}=F_{2}+F_{3}=1+2=3$
$F_{5}=F_{3}+F_{4}=2+3=5$
$F_{6}=F_{4}+F_{5}=3+5=8$
Table 2(on the right) is a table The ratios will of fractions each found by the continue the following fraction: $\frac{F_{n}}{F_{n-1}}$ pattern and which are the relative sizes of eventually approach the Fibonacci numbers. The rel- the unending ative sizes can each be rewritten number called φ as the following examples: ("phi") whose $\frac{F_{2}}{F_{1}}=\frac{1}{1}=1$
$\frac{F_{3}}{F_{2}}=\frac{2}{1}=1+\frac{1}{1}$
$\frac{F_{4}}{F_{3}}=\frac{3}{2}=1+\frac{1}{1+\frac{1}{1}}$
$\frac{F_{5}}{F_{4}}=\frac{5}{3}=1+\frac{1}{1+}$ precise value is then calculated as the Golden Ratio using the equation $\varphi=1+\frac{1}{\varphi}$.

$$
\begin{gathered}
\varphi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} \\
\text { Golden Ratio }: \varphi=\frac{1+\sqrt{5}}{2}
\end{gathered}
$$

Table 2	
Fraction of Adjacent Fibonacci Numbers	Decimal Equivalent
$\frac{1}{1}$	1.0
$\frac{2}{1}$	2.0
$\frac{3}{2}$	1.5
$\frac{5}{3}$	$1.666 \ldots$
$\frac{8}{5}$	1.6
$\frac{13}{8}$	1.625
$\frac{21}{13}$	$1.6153 \ldots$
$\frac{34}{21}$	$1.6190 \ldots$
$\frac{55}{34}$	$6.176 \ldots$

Example: Rabbits Suppose you begin with a pair of baby rabbits, one male and one female. The rabbits have a 1 month gestation period (1 month being in the womb) and they can reproduce after 1 month of being born. Each pair reproduces another pair. Assume no pair ever dies. How many pairs of rabbits will exist in a particular month?

Pattern: | Time in Months | Start | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Note: The pattern of number of pairs each | | | | | | | |

Time in Months	Start	1	2	3	4	5	6	7
Number of Pairs of Parents	0	0	1	1	2	3	5	8
Number of Pairs of New Babies	1	0	1	1	2	3	5	8
Number of Pairs of Adults	0	1	0	1	1	2	3	5
Total Number of Pairs	1	1	2	3	5	8	13	21

*New babies refers to those just born. Adults are 1 month olds and ready to reproduce. Parent pairs are those who just gave birth.

Example: New Patterns Determine a simple formula for $\left(F_{n}\right)^{2}+\left(F_{n+1}\right)^{2}$

n	1	2	3	4	5	6	7	8
$\left(F_{n}\right)^{2}$	1	1	4	9	25	64	169	441
$\left(F_{n+1}\right)^{2}$	1	4	9	25	64	169	441	1156
sum	2	5	13	34	89	233	610	1597

Note: The sum are all odd Fibonacci terms greater than F_{1} (meaning F_{3}, F_{5},etc). Even numbers follow the pattern $2 k$ while odd numbers follow the patten $2 k+1$. The table helps identify a pattern that can be written as $\left(F_{n}\right)^{2}+\left(F_{n+1}\right)^{2}=F_{2 n+1}$ where $\mathrm{n}=1,2,3,4, \ldots$
Creating tables is a helpful method of identifying patterns that otherwise cannot immediately be seen.

California State University
SAN MARCOS

Modular Arithmetic(informally known as clock arithmetic): In modular arithmetic, numbers "wrap around" upon reaching a given fixed quantity, which is known as the modulus (which would be 12 in the case of hours on a clock). When working with 12 as the modulus, we can say we are working with mod 12
Equivalence: \equiv means equivalent which is not the same as equal.
For example, on a modulus 12 clock, 12 is equivalent to 0 ; therefore, $12 \equiv 0 \bmod 12$ which can be read as " 12 is equivalent to $0 \bmod 12$." Another example is 37 is equivalent to 1 . Start at 0 and count up to 37 . You should return to 1 . Therefore, $37 \equiv 1 \bmod 12$

Another Perspective Now suppose we are working with modulus 10. $10,20,30,40,50,60$, etc are multiples of 10 ; therefore, they are all equivalent to $0 \bmod 10.34$ is a multiple of 10 with a remainder of 4 ; therefore, $34 \equiv 4 \bmod 10$.
$a \equiv r \bmod m \quad$ a is an integer with a multiple of m with a remainder r .

Check Digits

The following formulas are used to verify identification numbers using modulus 10 .

Bar Codes

$3 d_{1}+d_{2}+3 d_{3}+d_{4}+3 d_{5}+d_{6}+3 d_{7}+d_{8}+3 d_{9}+d_{10}+3 d_{11}+c \equiv 0 \bmod 10$
There are 12 digits and c is the check digit.

ISBN-13

$d_{1}+3 d_{2}+d_{3}+3 d_{4}+d_{5}+3 d_{6}+d_{7}+3 d_{8}+d_{9}+3 d_{10}+d_{11}+3 d_{12}+d_{13} \equiv 0 \bmod 10$
The last digit, d_{13}, is the check digit.

Checks

$7 n_{1}+3 n_{2}+9 n_{3}+7 n_{4}+3 n_{5}+9 n_{6}+7 n_{7}+3 n_{8}+9 n_{9} \equiv 0 \bmod 10$
The last digit, n_{9} is the check digit.
Example: Given the bar code $34003269120 c$. Find the check digit c.

Step 2: We need $56+c \equiv 0 \bmod 10$ which means we need a multiple of 10 and $r=0$. Note that $56+4$ $=60$
Step 3: $60 \equiv 0 \bmod 10$. This tells us $c=4$.
Fermet's Little Theorem If p is a prime number and n is any integer that does not have p as a factor then $n^{p 1}$ is equivalent to $1 \bmod p$. In other words, $n^{p}{ }^{1}$ will always have a remainder of 1 when divided by p .

Notation: $n^{p 1} \equiv 1 \bmod p$

Some Rules

If $a=q m+r$ then $a \equiv r \bmod m$
$a \equiv r \bmod m \Leftrightarrow a+b \equiv r+b \bmod m$
$a \equiv r \bmod m \Leftrightarrow a b \equiv r b \bmod m$
Note: a, q, m, r, k are all integers and \Leftrightarrow means it goes both ways

Simplifying Modulos

Example: Given: $5^{6} \equiv r \bmod 7$ Find r.

Step 1: Use Fermet's Little Theorem.

We know we are working with $p=7$ and $p \quad 1=7 \quad 1=6$
Step 2: Confirm 5 does not have a factor of 7 .
Therefore, $5^{7} \equiv 5^{6} \equiv 1 \bmod 7$

If $a \equiv r \bmod m$ then $a^{k} \equiv r^{k} \bmod m$ $a \equiv r \bmod m \Leftrightarrow a \quad b \equiv r \quad b \bmod m$

Example: Given $5^{600} \equiv r \bmod 7$. Find r.
Step 1: Recall known facts: $5^{6} \equiv 1 \bmod 7$
Step 2: Manipulate the numbers using known facts and rules:
$5^{600} \equiv 5^{6 * 100} \equiv\left(5^{6}\right)^{100} \equiv 1^{100} \equiv 1 \bmod 7$

